TY - JOUR
T1 - Raman Spectroscopy Analysis of the Morphology of Gold Nanoparticles Produced by Laser Ablation in Aqueous Proteinogenic Amino Acid for the Detection of Mercury in Water
AU - Carbajal-Morán, Hipólito
N1 - Publisher Copyright:
© (2023), (Polish Society of Ecological Engineering (PTIE)). All Rights Reserved.
PY - 2023
Y1 - 2023
N2 - The objective of the research was to analyze by Raman spectroscopy the morphology of gold nanoparticles generated by laser ablation in L-Cysteine of purity ≥ 97% dissolved in ultrapure water for the detection by color change of mercury dissolved in water. Three samples of 10 ml of ultrapure water were prepared with aggregation of 10 ul of L-Cysteine with concentrations of 1, 10 and 20 mM; the generation of the gold nanoparticles was by laser ablation with a wavelength λ = 1064 nm, energy of 60.28 mJ/p located at 30 cm from the convex lens generating ablation at 10 cm on a gold plate of dimensions 10×15 mm with thickness of 1 mm, for 30 min. The gold nanoparticles generated in these aqueous environments were characterized by Raman spectroscopy using a laser with a sensitivity of 785 nm with Raman Shift analysis range 860–3200 cm-1 and controlled power at 499 mW. The nanoparticles presented maximum peak resonance around Raman Shift 1164.96 cm-1 and 1288.06 cm-1. With the AuNPs + L-Cysteine sample with concentration of 10 mM, the author proceeded to the detection of Hg2+ prepared in 20 μl of ultrapure water at concentrations of 0.1, 5 and 10 μM; when adding 100 μl of AuNPs + L-Cysteine two peak absorbance spectra were obtained with different amplitudes observed by UV–Vis spectroscopy, indicating that Hg2+ decreased the repulsion of the negatively charged AuNPs, generating the visible color change for the three concentrations of Hg2+ with 25 minutes of agitation, turning intense purple for 10 μM of Hg2+; enabling the detection of mercury in water.
AB - The objective of the research was to analyze by Raman spectroscopy the morphology of gold nanoparticles generated by laser ablation in L-Cysteine of purity ≥ 97% dissolved in ultrapure water for the detection by color change of mercury dissolved in water. Three samples of 10 ml of ultrapure water were prepared with aggregation of 10 ul of L-Cysteine with concentrations of 1, 10 and 20 mM; the generation of the gold nanoparticles was by laser ablation with a wavelength λ = 1064 nm, energy of 60.28 mJ/p located at 30 cm from the convex lens generating ablation at 10 cm on a gold plate of dimensions 10×15 mm with thickness of 1 mm, for 30 min. The gold nanoparticles generated in these aqueous environments were characterized by Raman spectroscopy using a laser with a sensitivity of 785 nm with Raman Shift analysis range 860–3200 cm-1 and controlled power at 499 mW. The nanoparticles presented maximum peak resonance around Raman Shift 1164.96 cm-1 and 1288.06 cm-1. With the AuNPs + L-Cysteine sample with concentration of 10 mM, the author proceeded to the detection of Hg2+ prepared in 20 μl of ultrapure water at concentrations of 0.1, 5 and 10 μM; when adding 100 μl of AuNPs + L-Cysteine two peak absorbance spectra were obtained with different amplitudes observed by UV–Vis spectroscopy, indicating that Hg2+ decreased the repulsion of the negatively charged AuNPs, generating the visible color change for the three concentrations of Hg2+ with 25 minutes of agitation, turning intense purple for 10 μM of Hg2+; enabling the detection of mercury in water.
KW - AuNPs
KW - Raman spectroscopy
KW - laser radiation
KW - mercury
KW - polluted water
UR - https://www.scopus.com/pages/publications/85172354547
U2 - 10.12911/22998993/171564
DO - 10.12911/22998993/171564
M3 - Artículo
AN - SCOPUS:85172354547
SN - 2299-8993
VL - 24
SP - 169
EP - 175
JO - Journal of Ecological Engineering
JF - Journal of Ecological Engineering
IS - 11
ER -